
DUln FILE COpy

Naval Research Laboratory
Washington, DC 1,0375-5000

NRL Memorandum Report 6718

A Paradigm for Efficient Subset Recognition

JEFFREY K. UHLMANN

'It Integrated Warfare Technology Branch

0Information Technology Division

N

October 1, 1990

I

DTIC
S ELECTE

OCT121990 11

Approved for public release, distribution unlimited.

, :,' 57

J Iorem Approveo

REPORT DOCUMENTATION PAGE O o. 074-0o8

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reiew ng instructions. searching existing data sources,
gathering and maintaining the data neaded. and comnpleting and reviewing the cOllect-on of information Send com~iments regarding this burdei estimate or any other aspect of this
collection of information. including suggestions for reducing this burden to Washington Headquarters Services. Directorate for information Operations and Repors. 12 15 Jefferson
Davis Highwly. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704.01S8). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1990 October 1

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Paradign for Efficient Subset PE - 62702E
Recognition PR - 55355500

6._ AUTHOR(S)WU - DN150-127
6. AUTHOR(S)

Jeffrey K. Uhlmann

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington, DC 20375-5000 NRL Memorandum

Report 6718

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Defense Advanced Research Project Agency
1400 Wilson Boulevard
Arlington, VA 22209-2308

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution
unlimited.

13. ABSTRACT (Maximum 200 words)

I The notion of a finite-state automaton is examined with regard to problems involving the recognition of sets rather
than strings. More precisely, this paper is concerned with the application of the methodology of automata theory to the
general problem of efficiently determining whether a set A (or possibly a subset of A) is a subset of a set of sets S. The
following contributions result from this examination:

1. The traditional notion of a finite-state automaton is shown to be impractical for use in set recognitiont

2, Set-expressions, which are roughly analogous to regular expressions, are formally defined as a notation for
describing member-qualified sets or classes of sets'

3i A set-recognizing automation (SRA) is formally defined and an algorithm is presented for its construction
from a given set-expression.

4) More powerful forms of SRA's are developed which may have important practical applications in the area of
artificial intelligence. In particular, the subset machine is developed for the fast processing of a restricted
class of IF-THEN rules. Algorithm descriptions as well as LISP routines are provided.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Automata theory, Set theory 36

IF-THEN rules, AND/OR trees 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

i218b 09

CONTENTS

1. TRADITIONAL AUTOMATA AND SETS ... 1

2. SET-EXPRESSIONS.. 2

3. THE SET-RECOGNIZING AUTOMATION.. 3

4. SRA CONSTRUCTION ALGORITHM...5

5. ENHANCED CONSTRUCTION ALGORITHM...12

6. THE SUBSET MACHINE.. 17

7. SRA'S AND EXPERT SYSTEMS.. 20

8. SUMMARY ... 21
A2ceesslon For

R'TIS ";"A&I
DTIC TAB
U'lan"Oulleed EDE
JUStificLatio

By
_Distribut ion/

Aval-ibilt Codes
Ivnil and/o-r

Dist Special

A PARADIGM FOR EFFICIENT SUBSET RECOGNITION

1 Traditional Automata and Sets

Consider the number of symbols in a regular expression (excluding operators and paren-

theses) that would be required to specify a traditional deterministic finite state automaton

(DFA) capable of determining whether n input sybols form a set equal to a given set S

of n elements. Since a DFA recognizes only strings, all n! permutations of the n elements

comprising S must be explicitly specified in the expression. Thus, a regular expression in

simple sum-of-products form would require n.n! symbols. However, closer inspection reveals

that sum-of-products form does not, in general, result in a minimal expression. Since there

are only n distinct symbols, the n! products may be partitioned into n groups according

to their first symbol and then factored. In other words, each of the n sums of n-symbol

products with identical first symbols can be converted into a product of the factored symbol

and the sum of the remaining (n - 1)-symbol products. This process may then be applied

recursively on the new sums-of-products and on their resulting sums-of-products until no

products within a particular partition share the same first symbol.

The number of symbols resulting after the application of this process can be described by

the difference equation f(n) = n • f(n - 1) + n. This equation states that the number

of symbols required to specify a machine which will recognize a set of n elements is n

times the number of symbols required to specify a machine capable of recognizing a set of

(n - 1) elements plus the n symbols which remain after factoring the common first symbols.

(By definition, f(1) = 1 since a single symbol has no permutations other than itself.) In

more numerically enlightening terms, this equation reveals that the number of symbols in

a regular expression required to specify a machine capable of recovniziiig a set S is equal

to the sum of the number of r-permutations (r = 1 to ISI) over the elements of S:

f(n) (n-
k=1

From this expression it can be shown that n! < f(n) < n!c and thus is 0(ri!).

Manuscnpt approved January 19. 1990.

It should be clear from this result that the use of regular expressions to specify sets is im-

practical. However, a new form of expression shall be defined which is capable of efficiently

specifying large, complex set definitions. This notation, which will be referred to as set-

expressions, will prove to be a powerful tool for expressing a wide variety of set recognition

problems.

2 Set-Expressions

Let U be a finite universal set, or domain. The sets denoted by set-expressions over U are

defined recursively as follows:

1. If a E U, then a is a set-expression which denotes the set {{a}}.

2. If El and E2 are set-expressions which denote sets S1 and S2 . respectively, then

(El + E 2) is a set-expression which denotes the set S1 u S2.

3. If El and E 2 are set-expressions which denote sets S and S2, respectively, then

(El • E 2), optionally written E 1 E 2 , denotes the set {tl U t2 It 1 E S and 12 E S 2 }.

4. If E1 and E2 are set-expressions which denote sets S1 and S2, repectively, then (El -

E 2) denotes the set S1 - S 2 (where '-' in this case represents ordinary set difference).

5. If E1 and E 2 are set-expressions which denote sets S and S2, repectively, then (E 1 /E 2)

denotes the set {t - (t, n 2) It1 E S1 and t2 E S2}.

(Note 1: The '.' and '+' are read as AND and OR, respectively. Note 2: Man' parentheses

may be avoided without confusion if the AND operator is assumed to takf. preceJence over

OR. Note 3: the /' and '*' operators and the '-' and *+' operat rs are not in general

inverses; e.g., (A * B)/B = A if and only if every elemental set iM A is disjoint with every

elemental set in B. Similarly, (A + B) - B = A if and only I A and B are disjoint. The /'

and '-' operators are discussed briefly in the appendix.)

For example, the set-expression ab denotes the set {{a, b}}. The expression a+b. on the other

hand, specifies the set {{a},{b}}. The more complicated expression (a + b)(c + d) denotes

the set {{a,c}, {a, d}, {b,c}, {b, d}}. From the definition and examples, one should notice

that although set-expressions operate on sets of sets, they are very similar to ordinary set

notation both in terms of intuition and flexibility. In order to further parallel this similarity,

the universal set U will be regarded as a set-expression denoting a set of single-element sets.

This will permit expressions such as U - ak without any confusion as to what is denoted.

An exponential operator can also be assumed which specifies repeated applications of the

AND operation. For example, the expression (a, + a2 + ... + a,)k, or just Uk, specifies the

set of subsets over U, JUI = n, of k or fewer elements. Similarly, one can concisely define

sets such as the set of all subsets over a given U minus an element ak, or the set of all

subsets over a given U all of which contain an element ak.

3 The Set-Recognizing Automaton

An SRA (Set Recognizing Automaton), like automata for strings, consists of a finite set of

states and a set of transitions which determines the subsequent state of the machine from

the current state of the machine and an input symbol. It has an initial state q0 and a set

of final states F. Unlike automata for strings, SRA's are defined over a set of elements

U, rather than an alphabet, which represents the universal set. or domain, of its inputs.

This universal set differs from an alphabet in that it has an associated linear ordering 9.

(The choice of an ordering function 0 for any particular SRA is arbitrary simply because

the ordering of the members of a set, unlike the ordering of symbols comprising a string,

is completely arbitrary. For practical purposes. though, if the elements of U are viewed as

strings then it is convenient to let 9 represent usual lexicographic order.) All input to an

SRA is assumed to be 9-ordered.

Also like automata for strings, an SRA has an associated transition diagram. This diagram

3

consists of a finite, directed graph in which each state is represented as a vertex and each

transition from a state p to a state q on an element ei is represented as a directed arc

from the vertex p to the vertex q labelled ei. A restriction will be imposed upon the set

of allowable transitions that 8 of the label of any arc leaving a particular vertex must be

greater than 0 of any arc entering that vertex. This restriction enforces, among other things,

the definition of a set as a collection of distinct objects. Since an SRA assumes 9-ordered

input, this restriction does not impose any practical llmitations; however, its existence will

be important for subsequent mathematical analyses of SRA's.

Formally, an SRA will be denoted as a 6-tuple (Q, U, 9, 6, qO, F) where Q is a finite set of

states, U is a finite set of elements, 9 is a bijection which maps the i elements in U onto the

integers I to i, 6 is a function which maps Q x U to Q (i.e. 6(q.e) E Q). qo is an element

of Q representing the initial state of the machine, and F is a set of states from Q which

represents final (or accepting) states of the machine. An SRA Af is said to recognize a set

S = {el, e2 , ... , ek} (ordered according to 9) if and only if e, is a transition leaving qO. Ck is a

transition to a final state, and for every element ei, i < k, there exists an arc labeled e, to a

state with an arc labeled ei+1 leaving it. In other words, Al = (Q, U, 9,6, 0qo, F) recognizes

S if and only if there exists a path el, e2, ... , ek from qO to some state r E F. (Uppercase

S will be used to denote a particular set recognized by a machine M while reserving the

notation S(M) to refer to the collection (or set) of sets which can be recognized by M.)

From the preceding definitions, some useful observations can be made concerning the max-

imum size (i.e. number of states) an SRA can have for a given U of n elements. Because

of the imposed restriction that O(ej) > (e,) for every arc E, leaving a state q and every

arc ei entering q, it should be apparent that any arc ek, 9(k) = k, entering q limits the

number of arcs leaving q to a maximum of n-k. Thus, there is a maximum of ()states
which can be reached after consuming k symbols. Since an SRA can consume no more than

n symbols, the binomial theorem implies there is a maximum of 2' (the sum from 0 to n

4

of states in the entire machine. This is not surprising since as many as 2 n subsets

of any set of n elements can be specified, and one would expect there to be at least one

state per recognized set. (Actually, if final states are merely required to signal acceptance

or non-acceptance, 2n final states may be coalesced into a single state, thus limiting the

maximum to 2n - 1 + 1). What is also important to note is that the linear ordering imposed

by 0 implies that the number of transitions in the graph is linear in the number of states.

4 SRA Construction Algorithm

In order to demonstrate the practicality of this theoretical machine, it is important to

develop algorithms for implementing it in a high-level programming language. The strategy

will consist of constructing a routine which will convert a given set-expression into the

underlying graphical structure of its equivalent SRA and then creating a driver to animate

the graph for effective set recognition. More powerful forms of SRA's will be examined and

an evaluation of their capabilities and limitations will be undertaken.

The input to the construction routine will consist of a list U and a set-expression. (For

expressive convenience, the use of the symbols OR and + will be used interchangeably

to denote the OR operation and the symbols AND and * will be used interchangeably -

or even omitted - to denote the AND operation.) The routine will then evaluate each

operator and construct piece by piece the final machine. Each state of this machine will

be represented as a triple (a T f), where a is an element of [I which, from the context of

the machine, uniquely identifies the state; T is a list of states to which transitions can be

made; and f signifies whether the state is a final state or not. Thus, at the top level the

machine will appear as the transition list of the initial state. A list representation of triples

is the only data structure needed. For notational convenience, the kth triple in a list L of

triples will be denoted L(k). Furthermore, elements of this triple will be specified by using

5

the notation L(k).trans-symb to access the first element of the triple, L(k).transjist to

access the second element, and L(k).final-state to refer to the third element. A function

next-triple() will be assumed which extracts and returns the first triple from a list of triples.

The following defines a simple mechanism for evaluating a set expression:

function: EVALUATE (EXP);

local variables: prod, sum, symbol;

do forever;

if EXP is empty then return OR(sum, prod);

get-symb: symbol <-- NEXTSYMBOL(EXP);

if symbol = '*' or symbol = 'AND' then goto get-symb;

if symbol = '+' or symbol = 'OR' then begin;

sum <-- OR(sum, prod);

prod <-- nil;

end;

else begin;

if symbol is an expression

then symbol <-- EVALUATE(symbol);

else symbol <-- triple(symbol, nil, true);

if prod is empty then prod <-- symbol;

else prod <-- AND(symbol, prod);

end;

end;

end;

The basic logic of this function consists of a left-to-right evaluation of the expression as

a sum-of-products where each symbol is an atom, an expression, or an operator. If the

symbol is an atom, a triple is constructed representing a final state; if it is an expression, it

6

is evaluated; if it is an AND operator, it is ignored since adjacent operands are assumed to

represent products; and if it is an OR operator (or the end of the expression), an OR oper-

ation is performed. Since the literals AND, OR, *, and + are used to represent operators,

they should not be elements of U. In other words, they cannot be interpreted as operands

by the above algorithm.

From the EVALUATEfunction one can see that the OR operation is performed by a function

OR. This function is defined as follows:

function: OR (MI, M2);

local variables: tI, t2, machine;

do forever;

if MI is empty then add M2 to machine and return machine;

if M2 is empty then add Mi to machine and return machine;

if MI(1).trans-symb < M2(1).trans-symb

then add nexttriple(MI) to machine;

else if M2(i).transymb < MI(i).transsymb

then add next..triple(M2) to machine;

else begin;

tl <-- next.triple(Mi);

t2 <-- nexttriple(M2);

add triple (ti.transsymb,

OR(tl.trans_list, t2.trans_list),

tl.final-state I t2.final.state)

to machine;

end;

end;

end;

7

The relatively small amount of code belies the deeper complexity of this function. Thus, a

detailed explanation is necessary to demonstrate its correctness.

Observe that the OR operation in a set-expression specifies a pair of alternative membership

requirements, one of which must be statisfied if a set is to be accepted by the machine

described. This operation can be performed by unioning the top-level transition lists by

width. By width is specified because it is clear that the result should have the same depth

(i.e. level of nesting) as the alternative of greatest depth since the OR. operation does not

affect the elemental sets of the sets described by its operands. In terms of machines, this

amounts to coalescing the initial states of two machines. Hence, if a trivial machine A which

consists of nothing more than an empty transition list (i.e. the machine recongizes no sets)

is ORed with a non-trivial machine B, the result will be a machine identical to B. Thus,

the first two tests in the function merely determine whether one of the machines is trivial

and, if so, returns the other unchanged.

The next three tests assume lexicographic order for 9. They determine which transition

under consideration from M1 and M2 is to be placed into the union in order to maintain

ascending order by 0. The transition selected is then appended to the list machine. If the

two transitions under consideration are not distinct (i.e. represent identical states), they

are coalesced into a single transition by performing an OR of their transition lists and a

logical-or operation is necessary to ensure that the resulting state is marked as final if either

of the states coalesced to produce it are final states. For example,'

M1 <-- (A (B () true C () true) false); /* M1 = AB+AC */

M2 <-- (A (D) true) false D) true); /* M2 = AD+D */

OR(Ml, M2);

1For notational convenience one level of parentheses will be omitted (e.g., a list of triples such as ((a b

c) (d e f)) will be written as (a b c d e f), where triples are identified by context rather than explicitly by

parentheses).

8

returns (A (B () true C () true D () true) false D () true) which is equivalent to the

set-expression A * (B + C + D) + D, which denotes the sets AB, AC, AD, and D. An

examination of the algorithm reveals that if M1 is a set of m sets and 312 is a set of n sets.

then in the worst case OR will have to compare m + n sets; however, one should expect the

average case to require many fewer comparisons.

From EV4LUATE it can be seen that the AND operation is perfomed by the function

AND. This function is similar in logic to the OR function except that the unioning takes

place vertically rather than horizontally. As a result, the process is applied recursively in

the case of AND rather than iteratively as in OR. However, because each pair o, triples

from Ml x M2 must be considerei, the process must be repeated for every triple in All

and M2. The definition is as follows:

function: AND(MI, M2);

local variables: t1, t2, machine, temp;

do forever;

if M1 is empty or M2 is empty then return machine;

if Ml(l).trans-symb < M2(l).trans-symb then begin;

tl <-- next.triple(Ml);

tl.trans-list <-- AND(tl.trans-list, M2);

if tl.trans-list is true then

tl.trans-list <-- OR(tl.translist, M2);

add tl to machine;

end;

else if M2(l).trans-symb < Ml(l).trans-symb then begin;

t2 <-- next-triple(M2);

t2.trans-list <-- AND(t2.trans-list, M1);

if t2.final-state is true then

9

t2.trans-list <-- OR(t2.trans-list. M1);

add t2 to machine;

end;

else begin;

tl <-- next-triple(Ml);

t2 <-- next-triple(M2);

fstate <-- false;

if t2.trans-list is empty then

fstate <-- tl.final-state;

if tl.trans-list is empty then

fstate <-- fstate I t2.final-state;

temp <-- AND(tl.trans-list, t2.trans-list);

if tl.final-state is true then

temp <-- OR(temp, M2);

if t2.final-state is true then

temp <-- OR(temp, M);

add triple(tl.transsymb, temp, fstate) to machine;

end;

end;

end;

A close inspection of this code reveals why each state is initially marked as filial in EI ALU.

ATE: the process of performing a vertical union of two sets results in a filtering of final state

demarcations to the transition element of greatest 9-value. In other words. AND ensures

that a final state which signifies the acceptance of a particular set cannot be reached until

all of the 9-ordered elements of that set have been consumed. Thus. states are tentatively

marked as final until subsequent processing of the set-expression leads to an AND operation

which explicitly specifies that it should be marked otherwise. For example,

10

MI <-- (A (B () true C) true) false); /* M1 = AB+AC */

M2 <-- (A (D () true) false D) true); /* M2 = AD+D */

AND(Ml, M2);

returns (A (B (D () true) false C (D () true) false) false) which is equivalent to the set-

expression A * ((B + C) * D), which denotes the sets ABD and ACD. An examination of

the algorithm reveals that if M1 is a set of m sets and A12 is a set of n sets, then (Ml-M2)

will cause AND to merge at most mn pairs of sets.

Given that a deterministic graphical representation of an SRA can be generated, the con-

struction of a driver is straightforward. The following function accepts an input list S

(representing a 6-ordered set over U) and an SRA Af and returns a logical constant signi-

fying whether the set is recognized by the given machine:

function: DRIVER (S, M);

local variables: symbol, triple;

if S is empty then return false;

symbol <-- next-symb(S);

do while M is not empty;

triple <-- next-triple(M);

if triple.trans-symb = symbol then begin;

if S is empty then return triple.final-state;

symbol <-- next.symb(S);

M <-- triple.trans-list;

end;

end;

return false;

end;

11

5 Enhanced Construction Algorithm

The machine resulting from the construction just described effectively recognizes the set-

s specified by its corresponding set-expression definition: however, for most practical set

recognition applications, an SRA needs to reveal not only that some set has been recog-

nized, but specifically what set has been recognized. In other words, there is a need to

associate relevant information (e.g. what has been recognized, actions to be taken, etc.)

about a set with the final state that accepts it. This can be accomplished through the

following enhancements to the previous construction.

The following procedure accepts a list of pairs, each consisting of a set-expression and a list

(or atom) of information to be associated with the final state signalling its acceptance:

function: DEFINITIONS (EXPRESSIONS);

local variables: expression, machine, fs-info;

do while EXPRESSIONS is not empty;

expression <-- next-expression(EXPRESSIONS);

fs-info <-- expression.final-stateinformation;

machine <-- OR(machine, EVALUATE(expression.exp, fs-info));

end;

return machine;

end;

The following is an example of a definition which specifies a machine which recognizes the

sets of all odd or even numbers between I and 4 (i.e. U = {,2.3,4)):

M <-- ((1 AND 3) ODD

(2 AND 4) EVEN);

DEFINITIONS(M);

12

The routine DEFINITIONS would process each pair and return the machine (1 (3 () (ODD))

() 2 (4 () (EVEN)) ()).

In order to associate the appropriate information with the appropriate final state, the

EVAL UATE routine must be enhanced so that it receives all additional argument:

function: EVALUATE (EXP, FSINFO); /* Enhanced version */

local variables: prod, sum, symbol;

do forever;

if EXP is empty then return OR(sum, prod);

get-symb: symbol <-- NEXTSYMBOL(EXP);

if symbol = '*' or symbol = 'AND' then goto getsymb;

if symbol = '+' or symbol = 'OR' then begin;

sum <-- OR(sum, prod);

prod = nil;

end;

else begin;

if symbol is an expression

then symbol <-- EVALUATE(symbol, FSINFO);

else symbol <-- triple(symbol, nil, FSINFO);

if prod is empty then prod <-- symbol;

else prod <-- AND(symbol, prod);

end;

end;

end;

The following changes must then be made to OR and AND to enable then to work with final

state markers that are sets rather than logical constants. This entails the use of a function

union() to handle the possibiLity that various set-expressions might specify non-disjoint sets

13

(i.e. single states can result which recognize logically different sets. These states must then

have multiple information lists associated with them).

function: OR (M1, M2); /* Enhanced version */

local variables: t1, t2, machine;

do forever;

if M1 is empty then add M2 to machine and return machine;

if M2 is empty then add M1 to machine and return machine;

if M1(l).trans-symb < M2(1).trans-symb

then add next-triple(Ml) to machine;

else if M2(l).trans.symb < Ml(l).trans-symb

then add next-triple(M2) to machine;

else begin;

ti <-- nexttriple(Ml);

t2 <-- nexttriple(M2);

add triple (tl.transsymb,

OR(tl.trans-list, t2.trans-list),

union(tl.final-state, t2.final-state))

to machine;

end;

end;

end;

function: AND(Ml, M2); /* Enhanced version */

local variables: tI, t2, machine, temp;

do forever;

if Ml is empty or M2 is empty then return machine;

if Ml(l).trans-symb < M2(l).trans-symb then begin;

14

ti <-- next...tripleCMl);

tl.trans-list <-- AND(tl.trans-list, M42);

if tI.trans-list is true then

t1-traxs-ist <-- OR(tl.trans-list, M42);

add ti to machine;

end;

else if 142(l).trans-.symb < ?41(l).trans-symfb then begin;

t2 <-- next-.triple(M2);

t2.trans-.list <-- AND(t2.trans-.list, M41);

if t2.final-state is true then

t2.trans-.list <-- OR(t2.trans-list, MI);

add t2 to machine;

end;

else begin;

tI <-- next-triple(M1);

t2 <-- next..triple(M2);

fstate <-- false;

if t2.trans-ist is empty then

fstate <-- tl.final-.state;

if tl.trans-list is empty then

fstate <-- union(fstate, t2.final-state);

temp <-- AND(tl.trans-list, t2.trans..list);

if tifinal-.state is true then

temp <-- OR(temp, M2);

if t2.final-state is true then

temp, <-- OR(temp, MD);

add triple(tl.trans-.symb, temp, fstate) to machine;

15

end;

and;

end;

The construction just described results in a machine in which each final state provides

precise information about the input consumed thus far. UnfortunatelY, the information is

probably too precise for many applications. For example, if the machine is driven so that

information is yielded only from the state the machine happens to be in after exhausting the

input, a set which does not leave the machine in a final state will merely be signalled as 'not

accepted' even though a subset of that set may have led the machine through a final state.

A solution to this problem might be to design the driver to output information only from the

first final state reached. Such a design would guarantee that if any subsets of the input lead

the machine through a final state, the machine will yield some information: however, any

information about symbols consumed after that final state will be lost. Similarly. having the

machine output information from only the last final state reached will not reveal whether

any smaller subsets of the input were recognizable. What is needed is a machine capable of

providing information about all subsets of the input which are recognizable.

It might appear at first that by yielding output at each final state reached during the con-

sumption of a given input, information would be obtained about all subsets of that input

which are recognizable. However, a closer inspection of the machine will reveal the in-

adequacy of this approach. Let Af be a machine described by the set-expression abc + b

(U = {a,b,c}). If M is given the input ab, it wil end in a non-final state even though

b represents a recognizable subset. In order to enable the machine to output information

about every recognizable subset for every possible input, a more sophislicated (and compu-

tationally more expensive) construction algorithm is necessary.

16

6 The Subset Machine

A Subset Machine is defined to be a special type of SRA denoted by a 7-tuple (Q. U,

6, qO, A, A) in which A is an output set representing units of information associated with

particular states from Q by the relation A. For the immediate purposes -1 will be considered

to be the set of information lists associated with a set of set-expressions. However, instead

of associating an element of A with a state if and only if that state recognizes precisely a

set specified by that element's associated set-expression, A will be considered to associate

a state with an element of A if and only if a subset of the set recognized by that state is

specified by the set-expression associated with that element. In other words, if a subset

of the input consumed in reaching a given state is recognizable, then that state should

recognize it. Thus, no matter what state the machine terminates in. the output from that

state will include information about every recognizable subset of the consumed input.

It is clear from the above definition that the first state in a machine which is capable of

recognizing a particular subset must have an information list concerning that set associated

with it; however, all subsequent states must also recognize that set and, therefore. it would

appear that they must also have that same information list associated with them. In order

to avoid this redundant storage of information, the Subset Machine will be constructed

such that only the first state which is capable of recognizing a particular set will provide

information about that set. Then, if the driver is designed so that it collects the informa-

tion available at each state during the consumption of an input, precisely the same set of

information will generated upon termination of the machine as if the above definition were

strictly followed. Thus, the earlier driver is enhanced as follows:

fun:tin: DRIVER (S, M); /* Subset Machine */

local variables: i, n, info;

do while S is not empty;

17

symbol <-- next.symb(S);

n <-- number of triples in M;

do i = 1 to n;

if M(i).trans-symb = symbol then begin;

M <-- M(i).trans.list;

info <-- union(info, M(i).final-state);

leave; /* exit loop */

end;

end;

end;

return info;

end;

Essentially, all that has changed is that now an element of S for which there is no transition

from the current state of M is ignored without a change of state (recall that in the earlier

machines this situation implied that the input set simply could not be recognized). Also,

the result now represents a set of information lists rather than a single one.

It is certainly not obvious from the present construction how to determine whether any

subsets of the elements consumed prior to a given state are recognizable; however, this is

precisely the information which must be computed for every state in the machine. Fortu-

nately, this can be accomplished in a straightforward manner by utilizing the information

already computed by the earlier construction routine. Note that every possible sequence of

transitions in a machine M represents a partition of S(M). For example, a transition list

consisting of the k transitions (a,, a 2 , ..., ak), ordered by 9, partitions S(,1l) such that the

sets containing the elements aj, j < k, do not contain the elements a, where i < j. This fact

reveals immediately that no set containing an aj can be a subset of a set containing an a,.

Thus, to identify the recognizable subsets of a set containing an a,, only the sets containing

18

an aj where j > i need to be checked. This is precisely what the following routine does in

converting an SRA into a Subset Machine:

function: SUBSET (M);

local variables: i, j, n;

if M is empty then return nil;

n <-- number of triples in M;

do i = n to 1 by -1;

M(i) <-- SUBSET(M(i));

do j = I to (i - 1);

M(j) <-- OR(M(i), M(j));

end;

end;

end;

An examination of the above code reveals that the conversion of an SRA to a Subset Machine

is a relatively expensive process. Specifically, if it is assumed for a machine Af that the

elements of U are uniformly distributed throughout S(M) (if the distribution of elements

is not uniform, the size of the machine can be reduced by associating smaller 9-values with

elements which appear more often and larger 6-values with elements that appear less often)

and that the average size of the sets is roughly 1171/2, it is easy to see that a transition

a, O(a) = k, will lead to a sub-machine of Al roughly twice as large (in number of states)

as a sub-machine reachable via a transition b, O(b) = k + 1. In other words, an arbitrary

transition a in a machine M having n states will lead to a sub-machine of approximately

n/2 9 (a). Thus, an SRA recognizing z sets, containing an average of n/2 randomly selected

elements, would require O(zlogz) computations for conversion to a Subset Machine.

19

7 SRA's and Expert Systems

Historically, expert systems grew out of attempts to create general problem solving pro-

grams using predicate logic. The idea behind expert systems is that pure logic cannot

be expected to solve real-world problems without real-world knowledge. Thus, all expert

system has traditionally employed both an inference engine and a knowledge base. The

knowledge base usually consists of a collection of IF-THEN rules composed of logical AND

and OR conditions which are evaluated by the inference engine. Although superficially

similar to these IF-THEN rules, set-expressions are significantly more restrictive in that

they provide no facility for variable instantiation. This restriction (among others) results in

an extraordinary reduction in computational requirements while maintaining a surprising

degree of expressive power. In effect, the SRA construction process can be viewed as a

compilation of IF-THEN rules with constant operands. The result of this compilation not

only processes much faster than its interpreted counterpart (i.e. inference engine and rules),

but is also of a more convenient form for analyzing the logical structure of the knowledge

base.

Consider a Subset Machine resulting from the construction process. Means immediately

exist by which "holes" can be isolated in the knowledge base and even pinpoint ambiguous

or contradictory sets of rules (where a rule is now considered to be a set-expression). For

example, any state in the machine which recognizes two or more sets implies that the rules

describing those sets fail to distinguish them for any input containing a subset equal to the

set of elements consumed in reaching that state. Thus, it is a simple matter for a routine

(even the construction routine) to find these ambigously-defined subsets and permit the

knowledge engineer to qualify them with additional rules. In traditional expert systems

these conditions are exceedingly difficult, if not impossible, to discover by means other than

trial-and-error testing at the front-end of the system.

Another type of useful analysis which can be implemented is gap analysis. Gap analysis

20

consists of locating relatively long paths in the machine which do not trigger the recognition

of any sets. These paths are important because they may represent holes in the knowledge

base. These holes are particularly difficult to locate in traditional expert systems because if

the areas of the domain are overlooked in the development stage of the knowledge base. they

stand a great liklihood of being overlooked in the testing stage. Thus, gap analysis provides

a means for helping to assure that the knowledge base spans its given problem domain.

(Gap analysis could also be used as a primary tool for creating the knowledge base. Once

the domain of expertise has been established, the knowledge engineer coulc successively

address the largest gap in the knowledge base until the domain is fully spanned. This

would provide an organized and efficient alternative to starting from scratch and "filling in

the pieces.")

8 Summary

This paper began with a combinatorial argument suggesting that traditional automata

theory is impractical for applications involving set recognition. A new type of automaton (a

set-recognizing automaton or SRA) was then developed and a notation (set-expressions) for

describing the sets accepted by such a machine. Subsequently, an algorithm for converting a

set-expression to its corresponding SRA was developed. This algorithm was then enhanced

to construct more powerful machines which could have applications in artificial intelligence.

Specifically, the use of the Subset Machine was considered for the implementation and

development of a restricted class of expert systems. These very preliminary results suggest

that SRA's may have a broad range of potential applications worthy of further study.

LISP Implementation:

Here a simple LISP implementation of the algorithms described in constructing a Subset

Machine is presented. The goal is to provide machine-executable code which resembles as

21

much as possible the algorithmic descriptions used in this paper. As a result, the LISP

definitions display a heavy algol accent which is intended to make them more easily under-

standable to the reader who is unfamiliar with LISP.

The following routines are defined in order to provide convenient access to the various pieces

of the machine:

(DEFUN ALPHA (L) (CAR L))

This function returns the first element (assumed to be an atom from the list U) of a triple.

(DEFUN TRANSL (L) (CAR (CDR L)))

This function returns the second element (assumed to be a list of triples) of a triple.

(DEFUN FINAL (L) (CAR (CDR (CDR L))))

This function returns the third element (assumed to be a list representing information about

recognized sets) of the triple.

(DEFUN TRIPLE (L) (LIST (ALPHA L)(TRANSL L)(FINAL L))

This funtion returns a list whose elements constitute a triple.

(DEFUN REST-OF (L) (CDR (CDR (CDR L))))

This function takes a list L of triples and returns all but the first of those triples.

The following pages contant LISP definitions for OR-SETS. AND-SETS, EVALUATE,

DEFINITIONS, SUBSET, and DRIVER. (A comparison function LT is assumed to exist

which defines < according to 0.) A simple example is then provided.

22

(DEFUN OR-SETS (Mi M2)

(PROG (MACHINE)

LOOP1 (COND ((NULL Mi) (RETURN (APPEND MACHINE M2))))

(COND ((NULL M2) (RETURN (APPEND MAC::INE M))))

(COND ((LT (ALPHA Ml) (ALPHA M2))

(SETQ MACHINE (APPEND MACHINE (TRIPLE Mi)))

(SETQ Ml (REST-OF MI)))

((LT (ALPHA M2) (ALPHA M))

(SETQ MACHINE (APPEND MACHINE (TRIPLE M2)))

(SETQ M2 (REST-OF M2)))

(T (SETQ MACHINE

(APPEND MACHINE

(LIST (ALPHA Mi)

(OR-SETS (TRANSL Ml)

(TRANSL M2))

(UNION (FINAL Mi)

(FINAL M2)))))

(SETQ Ml (REST-OF M))

(SETQ M2 (REST-OF M2))))

(GO LOOPi)))

(DEFUN AND-SETS (Ml M2)

(PROG (MACHINE T1 T2 TiT2)

LOOPI (COND ((OR (NULL Ml) (NULL M2)) (RETURN MACHINE)))

(COND ((LT (ALPHA MI) (ALPHA M2))

(SETQ Ti (LIST (ALPHA Ml)

23

(AND-SETS (TRANSL MI) M2)

NIL))

(COND ((FINAL Mi)

(SETQ Ti (LIST (ALPHA Ti)

(OR-SETS (TRANSL Ti)

M2)

NIL))))

(SETQ Ml (REST-OF Mi))

(SETQ MACHINE (APPEND MACHINE TI)))

((LT (ALPHA M2) (ALPHA Mi))

(SETQ T2 (LIST (ALPHA M2)

(AND-SETS (TRANSL M2) MI)

NIL))

(COND ((FINAL M2)

(SETQ T2 (LIST (ALPHA T2)

(OR-SETS (TRANSL T2)

Mi)

NIL))))

(SETQ M2 (REST-OF M2))

(SETQ MACHINE (APPEND MACHINE T2)))

(T (SETQ Ti (AND-SETS (TRANSL Mi)

(TRANSL M2)))

(COND ((FINAL Mi)

(SETQ Ti (OR-SETS

Ti

(REST-OF M2)))))

(COND ((FINAL M2)

24

(SETQ Ti (OR-SETS

Ti

(REST-OF Mi)))))

(SETQ MACHINE

(APPEND MACHINE

(LIST (ALPHA Ml)

TI

(UNION

(COND

((TRANSL Mi NIL)

(T (FINAL MI)))

(COND

((TRANSL M2 NIL)

(T (FINAL M2)))))))

(SETQ Ml (REST-OF Mi))

(SETQ M2 (REST-OF M2))))

(GO LOOPi)))

(DEFUN EVALUATE (EXP)

(PROG (SYMBOL PROD SUM)

LOOP (COND ((NULL EXP) (RETURN (OR-SETS SUM PROD))))

(SETQ SYMBOL (CAR EXP))

(SETQ EXP (CDR EXP))

(COND ((OR (EQUAL SYMBOL 'AND) (EQUAL SYMBOL '*))

(GO LOOP))

(COND ((OR (EQUAL SYMBOL 'OR) (EQUAL SYMBOL '+))

25

(SETQ SUM (OR-SETS SUM PROD))

(SETQ PROD NIL)

(GO LOOP))

((LISTP SYMBOL) (SETQ SYMBOL (EVALUATE SYMBOL)))

(T (SETQ SYMBOL (LIST SYMBOL NIL FS-INFO))))

(COND ((NULL PROD) (SETQ PROD SYMBOL))

(T SETQ PROD (AND-SETS PROD SYMBOL))))

(GO LOOP)))

(DEFUN DEFINITIONS (EXPRESSIONS)

(PROG (MACHINE EXP)

LOOP (COND ((NULL EXPRESSIONS) (RETURN (SUBSET MACHINE))))

(SETQ EXP (CAR EXPRESSIONS))

(SETQ EXPRESSIONS (CDR EXPRESSIONS))

(SETQ FS-INFO (CAR EXPRESSIONS))

(SETQ EXPRESSIONS (CDR EXPRESSIONS))

(SETQ MACHINE (OR-SETS MACHINE (EVALUATE EXP)))

(GO LOOP)))

(DEFUN SUBSET (M)

(COND ((NULL M) NIL)

(T (APPEND (LIST (ALPHA M)

(SUBSET (OR-SETS (TRANSL M)

(REST-OF M)))

(FINAL M))

26

(SUBSET (REST-OF M))))))

(DEFUN DRIVER (S M)

(PROG (INFO TEMP)

LOOP (COND ((NULL S) (RETURN INFO)))

(SETQ SYMBOL (CAR S))

(SETQ S (CDR S))

(SETQ TEMP M)

LOOP2 (COND ((NULL TEMP) (GO LOOP))

((EQUAL SYMBOL (ALPHA TEMP))

(SETQ M (TRANSL TEMP))

(SETQ INFO (UNION INFO (FINAL TEMP)))

(GO LOOP))

(T (SETQ TEMP (REST-OF TEMP))))

(GO LOOP2)))

A EXAMPLE

The following defines a machine via three set-expressions:

(SETQ EXPRESSION '((1 2 + 1 1) (120R13)

(1 2 3) (123)

(1 + 3) (10R3)))

EXPRESSION is then converted to a machine Al:

(SETQ M (DEFINITIONS EXPRESSION))

27

The DRIVER can then be used to examine some set (represented by a list that is assumed

to have been ordered by 0). For example,

(DRIVER '(1 2) M) ==> (120R13 10R3)

(DRIVER '(1 2 3) M) == (120R13 123 10R3)

(DRIVER '(2 3) M) ==> (10R3)

Additional Operators:

For completeness the complements of the AND and OR operations should be considered.

These operations have not been discussed thus far because. although quite powerful in terms

of discriptive conciseness, their indiscriminate use may result in excessive computations.

Furthermore, determining what sets are described by expressions involving these operations

tends to be far less intuitive than for expressions using only AND's and ORs: therefore,

their use may be prone to error (or huge computational expense) if extreme care is not

taken. Recall their definitions:

4. If El and E 2 are set-expressions which denote sets S and S 2 . repectively, then (E, - E2)

denotes the set S 1 - S2 (where '-' in this case represents ordinary set difference).

5. If E1 and E2 are set-expressions which denote sets S and S2, repectively. then (EI/E 2)

denotes the set {t - (t, n t2) It1 E S1 and t 2 E S 2).

Thus, the set-expression a - b denotes the set of sets in a which are not in b. For example.

the expression U' - U denotes the set of all sets of size f, 7n < < n. over U. The

expression a/b, on the other hand, denotes the sets in a which do not have a subset in b.

For example, the expression U'/ab, 117 = n, denotes the set of all sets over U which do

not contain the elements a and b. The algorithm for implementing these operations are as

28

follows:

function: WIDTH-DIFFERENCE (MI, M2);

local variables: machine, t1, t2, temp, fstate;

do forever;

if M1 is empty then return machine;

if M2 is empty then add MI to machine and return machine;

if Ml.transsymb < M2.trans-symb then

add next.triple(Ml) to machine;

else if M2.trans-symb < Ml.trans.symb then

temp <-- next-triple(M2);

else begin;

tl <-- next.triple(Ml);

t2 <-- next.triple(M2);

if M2.final-state is not empty then fstate <-- nil;

else fstate < Ml.final-state;

temp <-- triple(tl.transsymb,

WIDTH-DIFFERENCE (tl.trans-list,

t2.trans-list),

fstate);

if temp.trans-list is not empty or temp.final-state

is not empty then add temp to machine;

end;

end;

end;

function: DEPTH-DIFFERENCE (MI, M2);

29

local variables: machine, t1, t2, temp, fstate;

do forever;

if M1 is empty or M2 is empty then return machine;

if M2.trans..symb < ml.trans-.symb then

temp <-- next-.triple(M2);

else begin;

ti <-- next-.triple(Ml);

if ti.trans-.symb < M2.trans-.symb then

temp <-- triple(tl.trans-synb.

DEPTH.DIFFERENCE(tl.transjlist, M2),

ti .final-state);

else begin;

t2 <-- next-triple(M2);

if M2.final-state is empty then

temp <-- triple(tl.trans-symb,

DEPTH-DIFFERENCE(tl .transjlist,

t2.trans-list),

ti .final..state);

else temp <-- triple(nil, nil, nil);

end;

if temp.trans-list is not empty or temp.final-state

is not empty then add temp to machine;

end;

end;

end;

These operations may be translated into LISP as follows:

30

(DEFUN WIDTH-DIFFERENCE (Ml M2)

(PROG (MACHINE TEMP)

LOOP (COND ((NULL MI) (RETURN MACHINE))

((NULL M2) (RETURN (APPEND MACHINE Ml)))

((LT (ALPHA M2) (ALPHA Ml))

(SETQ M2 (REST-OF M2)))

((LT (ALPHA Ml) (ALPHA M2))

(SETQ Ml (REST-OF MI)))

(T (SETQ TEMP

(LIST (ALPHA Ml)

(WIDTH-DIFFERENCE (TRANSL Ml)

(TRANSL M2))

(COND ((FINAL M2) NIL)

(T (FINAL M)))))

(COND ((OR (TRANSL TEMP) (FINAL TEMP))

(SETQ MACHINE (APPEND MACHINE TEMP))))

(SETQ Ml (REST-OF M))

(SETQ M2 (REST-OF M2))

(GO LOOP)))

(DEFUN DEPTH-DIFFERENCE (Ml M2)

(PROG (MACHINE TEMP)

LOOP1 (COND ((NULL MI) (RETURN MACHINE))

((NULL M2) (RETURN (APPEND MACHINE Ml)))

((LT (ALPHA M2) (ALPHA M))

(SETQ M2 (REST-OF M2))

31

(GO LOOPi))

((LT (ALPHA Ml) (ALPHA M2))

(SETQ TEMP

(LIST (ALPHA Ml)

(DEPTH-DIFFERENCE (TRANSL Ml) M2)

(FINAL MI))))

(T (SETQ TEMP

(COND ((FINAL M2)

(LIST NIL NIL NIL))

(T (LIST (ALPHA Ml)

(DEPTH-DIFFERENCE

(TRANSL MI) (TRANSL M2))

(FINAL M)))))

(SETQ M2 (REST-OF M2))

(SETQ Ml (REST-OF M))

(COND ((OR (TRANSL TEMP) (FINAL TEMP))

(SETQ MACHINE (APPEND MACHINE TEMP))))

(GO LOOPi)))

32

